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SUMMARY

The Doppler-difference optical arrangement is nowadays the one most commonly
used for fluid flow investigations with a laser anemometer. In this review, the
essential characteristics of the Doppler-difference signal and of the associated
autocorrelation function are considered for both laminar and turbulent flows.
Experimental conditions under which it is known that the autocorrelation function
can be analysed to yield reliable estimates of mean velocity and turbulence
intensity are specified.

The various data-reduction methods which have been proposed are classified
and briefly reviewed. It is shown that unknown flows having relatively high
levels of turbulence can only be treated successfully if there are very many
fringes within a beam diameter, or if frequency-shifting techniques are used to
achieve an equivalent effect. The estimation of turbulence intensity in low-
turbulence flows also presents special difficulties and a procedure which uses
information already available in the transform plane is described.
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I INTRODUCTION

We consider in this review the problem of extracting information concerning

the mean value and the fluctuations of some specified component of velocity of a

fluid from the autocorrelation function of the intensity of the radiation scat-

tered from a localised region, the measuring volume, by small particles embedded

in the fluid. It is assumed that the scatterer follows the bulk motion of the

fluid with perfect fidelity. We shall be concerned with the output of an ideal

autocorrelator operating on the signals obtained with a Doppler-difference opti-

cal system which, because of its ease of alignment, inherent stability and the

efficiency of incoherent light-collection, has become the most widely-used laser

velocimetry arrangement in fluid-mechanical applications. Detailed discussions

of the autocorrelation functions encountered in other forms of light-beating

experiments, such as those using homodyne or heterodyne techniques, can be found

in Ref I. We shall not consider the form of the output obtained from Doppler-

4 difference signals with a clipping correlator. (The formulae given here should

remain valid, however, if the clipping level is set equal to zero and the number

of counts per sample time is very much less than one.)

2 THE SCATTERED INTENSITY AND ITS AUTOCORRELATION FUNCTION IN LAMINAR AND
TURBULENT FLOWS

We assume that the light source is a linearly polarised laser operating in

the fundamental (Gaussian) TEM0Q mode. Coherence requirements are very modest

and restriction to a single longitudinal mode of operation is usually unnecessary.

We assume further that the motion of the scattering particle follows that of the

fluid with perfect fidelity; in aerodynamic applications sub-micron particles are

usually necessary, and are always advisable for experiments on gaseous flows.

It will be shown later that a small angle of intersection between the incident

beams is an important feature of a system designed for use on a completely

general turbulent flow. Under these conditions it is a reasonable approximation

to assume that for equal incident beam-powers, the scattered light intensities in

any given direction are equal. For larger angles of intersection the depth of

modulation of the Doppler-difference signal may depend significantly on the

optical geometry, and account would have to be taken of the effect in any more

general theory.

We suppose then that the scatterer radiates with equal efficiency from the

two incident beams. We allow for the fact that these may not be perfectly

balanced by introducing the quantity p , the ratio of their amplitudes. We

shall assume, however, that the beams have the same characteristic radius r0



this is the radial distance at which the amplitude of the electric field has
-i -

fallen to e of its axial value. If 6 is the angle of intersection of the

beams, the output of a square-law detector (such as a photomultiplier tube) on

which the scattered radiation falls will take the form2

I(x,y,z) = 0ex 2(2 sin 2 e + Y 2 Cos 2 6+ Z24]

x [ex( xy sin cos + ex( xy sin f cos

2p CosX)i

where (x,y,z) are the coordinates of the scatterer's position. 10 is a constant

of proportionality which includes other constants such as the collecting

efficiency. If the particle is moving with velocity (vxvyvz) and at time

t = 0 is at some general point (E0 ,noC ) on its trajectory (see Fig 1), then

x = 0 + vxt

y = 0 + vyt

z =z

I(x,y,z) is now a function of time, I(t) . The frequency of the cosine term in

equation (1) is seen to be vy/s , where s is the Doppler-difference 'fringe'

spacing, defined in the usual way:

s = X/(2 sin.)

I(t) represents the analogue signal which would be obtained if the scat-

tered radiation weie sufficiently intense. At very low signal-levels it repre-

sents instead the probability of photon detection by the photocathode.

The output of an autocorrelator operating on such a signal will be propor-

tional to the function o
00

G(T) = f (I(t + -dt

-CO
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This expression, relating to a laminar flow, has been evaluated for a general

optical geometry in Ref 2. The result is complicated, but simplified forms

yielding more insight into its physical significance have been obtained for par-
3ticular cases and are presented elsewhere in these proceedings

A formula applicable to three-dimensional turbulence was also derived in

Ref 2 by making the simplifying assumption that the beam intersection angle is

very small, so that the measuring volume becomes approximately cylindrical.

Except in the case of fully forward or fully backward scattering, the detector

can usually be arranged to provide a well-defined cut-off in the direction of

the beams. We summarise here the main feature of the subsequent argument.

Equation (I) can be rewritten as

2) 2
f sin Cos

I 0 0L

2 p2  -
+ 2 ePl -r x sin - + y cos

2~I i( 2in- 2 Bd 2r

I_ _ x i 2 e 2 c2- . (2)r
+ 2 exp r2  2 cos s (2)

0

One usually possesses some a priori knowledge of the mean flow direction

and we will assume that the beams are oriented in such a direction that transits

for which vx  is large are relatively uncommon. The angle of intersection is

now supposed so small that for the great majority of transits the quantity

x sin 6/2 is negligible compared with y cos 6/2. (As an example, suppose the

fringe size is 10 Um and A = 0.5 jm. Then 0 c A/s :t- 0.05 c 3 , and

sin 0/2 = 0.025 . If the detector aperture is adjusted to make xmax  4r0

say, we have

(x sin.~) 0.1r0

Then a good approximation to equation (2) is
0
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f(t) = xP- y z2][+ P2 + 2p cos -L

0

= (I + P2)exp) -r . (y 2 + z 2 ) |+ m cos-Z2- , (3)

where m is the Michelson fringe visibility:

M2p

Further simplification is possible. Suppose the point of closest approach

to the x-axis has coordinates (xoYoZ O) . The vector joining this point to the

x-axis is normal to the particle trajectory and lies in the direction

yoi - + z0k

Hence

Yovy + z0 vz  = 0

and we find from equation (3)

f(t) = (I+p 2) [xp -- (Y2 +

fv2t 2 + 2 (+)
xp- 2 + m Cos sL

xp 2 ][ +c s(YO +v yt)J (4
r0

The autocorrelation function of this expression has been shown in Ref 2 to

be, to a very close approximation ,

G(O 2 2 4-

GCT) = .- ~- r 0  + P2) 2[xp~ (Y2 z2) ]v2+2)22 r ~ x2 0 o 0 Vy z )

r0

(2 +v2
x expi z 2 + m 2 cos ( vyT)] (5)

1- 0

f(t) and G(T) represent the function of time and the autocorrelation function o

which would be obtained under conditions of laminar flow, or from a single
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strong scatterer. We remark here that they contain similar exponential multiply-

ing factors, functions of t and T respectively, so that high-pass filtering

of either f(t) or G(T) in order to obtain an estimate of v from the cosineY

term would introduce similar errors.

The notation will be changed at this point to conform with a common aero-

dynamic convention. The velocity component normal to the fringe planes, v
y

will be denoted by u and the component perpendicular to the plane of the

beams, vz , by v . The third orthogonal component will be denoted by w .•

Then equation (5) becomes

G(T) a 0 v2  xp u2 +v2T21(i + jm2 cos , (6)

where the various constants have been included under the symbol a0 . If G(T)

represents a summation over a number of transits, a0 will be understood to2
involve an average value of the quantity (y + z 0 ), in an obvious sense.

In turbulent flow, successive particles cross the measuring volume gener-

ally with different velocities, and the resulting autocorrelation function will

be an integral of the laminar form for G(T) of (6) over the probability

density function p(u,v,w) which characterises the turbulence. The fact that
2

the scattering volume is approximately cylindrical can be exploited to show

that the composite autocorrelation function - the output of the correlator in

fully turbulent conditions - becomes

HCO) a1 f f ] P(u,v,w)
00 -00 -00

- 2[ex u + m2 mCos L_ dudvdw (7)

r0

where a now includes constants depending on the numbers of particles, the

optical geometry and the duration of the experiment. In deriving (7) it was

CO assumed that the particles are completely randomly distributed in an incompress-

ible fluid, and that the dimensions of the measuring volume are small compared

with the length scale of the turbulence. The dependence of the instantaneous

rate at which transits occur on the fluid velocity leads to the disappearance in

(7) of the factor /(u 2 + v2 ) appearing in (6).
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3 ANALYSIS OF THE AUTOCORRELATION FUNCTION

3.1 Laminar flows

Here equation (6) applies and data-reduction can proceed by straight-

forward curve-fitting. Alternatively, the problem can be regarded as a special

case of the more general one of estimating mean velocity in turbulent flow and a

single computer programme can be designed to cover both conditions. Purely

laminar flows are in any case rarely, if ever, encountered in practice and an

estimate of the turbulence level present is usually wanted.

3.2 Turbulent flows

We assume that fluctuations may be occurring in all three components and

note that integration over the w-component in (7) can be carried out immed-

iately, since the kernel of the integral is independent of w

By definition, the joint probability for the u- and v-components is

Puv (uv) = J p(u,v,w)dw

and hence

H(r) - a f 0 f (u'v)[xp)I_ (u2 +V) T2 l](' + jm2 Cos .2TUT dudv . (8)

In practice there will always be a nearly-constant (dc) level added to the

signal, which arises mainly from background radiation present during the experi-

ment. This is the value to which G(T) will tend as T tends to infinity and

is normally included in the data-reduction procedures as another unknown variable

whose magnitude has to be determined.

Equation (8) presents us with an impasse, for we cannot recover the two-

dimensional distribution puv from an experimental function of a single var-

iable. The problem centres essentially on the exponential term, since this

factor couples both u- and v-components into the measured correlation func-

tion, and it is obvious that some extra information is required if progress is

to be made at all. If a complete mathematical model for puv is available,

data-reduction can be carried out by curve-fitting to H(T) . This will not be

the case, however, in most problems of any real intrinsic interest (io for the 0
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majority of experiments), and we now consider special cases, involving weaker

assumptions, for which useful information about the velocity field can be

recovered from the experimental function H(T)

3.2.1 p separable

We write

Puv(U, v) = pu(U)pv(V)

Note that this implies that the stress term u'v' must be zero; primes denote

the zero-mean fluctuating parts of the velocity componentb and capital letters

their mean values:

u = U+u' v = V+v'

For, by definition 00
uv = ff uv(u,v)dudv

-Co -C0

f pu (u)du f upv(v)dv

-CO -0

= UV

But

uv= (U + u')(V + v')

=UV + u

Hence

UIV' 0

Equation (8) can be written

OI W2
H(T) = a v) exp 22 dv +U xl I+ m os du

00 0_( r0 o r 0 J\

......... (9)

Both integrals are unknown functions of T , so that progress cannot be

made in determining the characteristics of either pu or p v without further

assumptions.



(a) u- and v-components both normally distributed

We put

S exp (u- U)2a(2 2a

where a is the standard deviation of the fluctuations in u , with a similaru

expression for pv(v)

In this case the integrals can be evaluated explicitly, and we find, to a

very good approximation,

H(T) M a [+V 2 )p 2  [I + 2m2ep cos - - (10)ro s C s TrT

for values of T such that

r2 r2
T2 0 l 0

S 2 2 2 -f "(l
af au v

(With these restrictions, the result can also be shown to hold if p uv is a 4
bivariate normal distribution, so that a shear stress term can be accommodated4

In this case, p uv is not separable.)

It is often more convenient to work in terms of the turbulence intensity

Sthe ratio of the standard deviation to the mean, rather than in terms of the

standard deviation itself. For example, suppose we are using a 48-channel

correlator operating at 50 ns per channel in an experiment on a supersonic flow

where the mean velocity is 400 m s- . Then T max is 2.4 Us and for a beam dia-

meter of I mam, the inequalities would require that both n u  and n v are less

than about 0.15 (15%) or so.

(b) Hermite polynomial expansion for p u(U): v-component normally

distributed

This approx:imation 5 is intended for applications where the distribution of

one velocity component only may be highly non-Gaussian and rests on the assump-

tion that p v(v) is a Gaussian and that pUM can be written in the form of a

Gram-Charlier expansion :
4b a n

* Inthi cas, p is nt sparale.
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(e .(exp u

I(u-U) 2  
(v__ 

__)_2L IUv(u 2V )  = 0 2 2 AkHekI u v k=O

where Ak = .j ek( U)

and Hek  is the Hermite polynomial defined by the relationk

k 2 ) k 2]

Hek(z) = (-)k e z2 - [exp(- z2]

The choice of L in the upper limit (2L - I) of the sum will depend on

the amount of information required from the calculation. The first few poly-

nomials have the following forms:
2!

He(Z) = 1, He(z) = 2z He2 (z) =4z- 2  2,

3 4 2
He3 (z) = 8z - 12z , He 4 (z) = 16z - 48z + 12

The double integral can again be evaluated explicitly and, using again the

approximations of (II), takes the form

(Ut)= 2 ] + 2 2122T T ro 2kH(T) a I xp U 2T-2+ jm 2 exp -- ()k( s

k=O

x 2k cos 1 + A2 k+l T sin ( IrUr)] . (12)

The Ak are now determined by curve-fitting. Fig 2 of Ref 5 illustrates the

way in which a much better approximation can be obtained to a bimodal form of

Pu(u) using the Gram-Charlier method than with the purely Gaussian model of the

last section.

(c) Eigenfunction expansion for p u(u): v-component assumed negligibly

CO small
0

Here the correlation function reduces approximately to the form
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H(t) af Pu(u) xp T) + 2m2 Co iLdu
-W 0  sJ

It is convenient at this point to introduce an important practical consid-

eration. Because the kernel of the integral is an even function of u , any

negative values of u which may occur will contribute to H(-r) in exactly the

same way as equal positive ones. Hence if an undistorted form of pu(u) is to

be recovered, the u-component must always be of the same sign; ie the flow

must be non-reversing. (In addition, the analysis summarised in this section

rests on Hilbert-Schmidt theory, which requires that the kernel be symmetric in

u and T .) Let us suppose then that u is always positive, so that the lower

limit of the integral can be set equal to zero:

H(T) 00 p(u)[ ( E2T2 + 2 du (13)

The procedure now is to try to find a set of functions *i and factors

Xi. eigenfunctions and eigenvalues, which satisfy the associated Fredholm1

equation

J i(u)K(uT)du = i()

0

where K(u) + m

Suppose also that the 4i form a complete orthogonal set. Then any

arbitrary function, such as pu(u) , can be expanded in a series of the form

Pu(U) = cj(u)

j=0
0

where the c. are unknown coefficients which have to be determined. Substitut-
3

ing this expression into the equation for H(T) and proceeding formally, we

have
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H(T) = a1 f[ c (u)K(UTr)du

= a Z cjjj()

j=O

Using the orthogonality of the *i ' we have

00.

0 00f ~t~(dt= aI1 k~
0 ~~ ~~ I [ i. )k~ rd

so that

Ck a ix f H(.t)4k(.T)d T

0

and finally

P= (*u(u) H(r)Oj(r)dt] (14)

A complete set of eigenfunctions and their associated eigenvalues for the

Doppler-difference kernel has been found. They are discussed in detail and

their application to experimental data described in another contribution to

these proceedings
6

3.2.2 puv not separable

Consider again equation (8):

0 H(T) a1  Puv(UV) exp- (u2 + 2 )T2 I + m 2 cos 27!u1)dudv

- v 
2

.. LW_
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We discuss two important cases, distinguished by the behaviour of the

exponential term.

(a) Exponential term approximately unity

If there are sufficient fringes across the beam (r > s) the exponential

term will be almost unity over the observed length of the autoeorrelation

function and we obtain immediately the approximation

11t) a2 f Pu(U) 2 iut

I u s

-O

since

P (u) _ I Puv(u,v)dv

-0

Note that it is unnecessary to make assumptions now about the shape of the

function pv and that high turbulence levels in the v-component will not

affect the result. Again we remark that the correct form for the distribution

Pu(u) can only be obtained if the u-component is of constant sign. Here we

assume that, if necessary, a constant known bias um is imposed in order to

make u + um positive for each particle transit. This can be achieved by intro-

ducing a frequency-shifting device into one or both beams; see for example Ref 7

for a review of available methods. We can then without loss of generality again

replace the lower limit of the integral by zero:

w

H(T) = a2  Pu(u) cos27Ldu+a (15)

0

Hence Pu (u) can be recovered by performing a simple Fourier cosine transform

on the data, after removal of the additive background constant a, . The latter

can easily be carried out automatically by the data-reduction progrme - high

accuracy is not necessary.

The requirement that r0 > s implies a lower limit to the spatial resolu-

tion, characterised by the beam diameter 2r0 , which can be achieved in high-

speed flows. With a minimum sample time of 50 ns and beams of not more than

I m diameter, the condition cannot be satisfied, for all practical purposes, in

most supersonic applications. (In nearly laminar conditions frequency-shifting

could conceivably be used to bring the effective velocity down.) However, for
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lowr-speed flows it is very often possible to arrange the experiment appropriat-

ely. Note also that if the speed is sufficiently low, frequency-shifting

methods can now be used to accommodate very high levels of turbulence 8, for

which flow reversals will occur from time to time, or to achieve fine spatial

resolution.

(b) Exponential term varying significantly: narrow distributions of
the velocity components

These conditions are met with, for example, in supersonic boundary layers
2

at low Mach numbers .In this case, since u and v are assumed to lie within

a narrow range, the exponential term in (8) varies much more slowly within the

integral, for a given value Of T , than the cosine term and can be replaced to

a good approximation by the value it takes when u and v are given their mean

values, U and V .It can then be taken outside the integral and the integra-

tion over the v-component again carried out, yielding the approximate

expression

H~~t) = iexp~ (U + T V ] P(u) (I + Im Cos2!rd . (16

Suins the positins te peaks nlo the ransfmi lane reae bey afectead

byth epntI erm and a linea aprxmto to it s wi prIdeToo

iIta valesma fo UadrVctiTheisomte prwntofrmme ansbem desine toe

dtermbtin f hs estimatesoftogethe.Fr arwitheanly rymeialoct ackgroun

crbutiono the iosortelao fucin. the anitudlae ofrte baeponfentalterm

can now be calculated for each value Of T and a modified form of H(T)
OD derived from which the damping effect of the exponential has been eliminated.

A second Fourier transform will now give an improved estimate for p u (u) from

which fl can be determined with good accuracy. A similar calculation can be

carried out to obtain p v(v) , and hence nv , from the other set of data.
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3.3 Data-reduction using Fourier transforms

Clearly the most satisfactory experimental technique is to arrange where-

ever possible that there are very many fringes contained within the beam dia-

meter, since analysis can then proceed with the minimum of a priori assumptions

about the flow. In addition, we have seen in section 3.2.2(a) that the problem

of data-reduction collapses to that of carrying out a Fourier transform on the

experimental data, which is a simple and rapid computational procedure. We

remark here that the fast Fourier transform (FFT) is not usually the appropriate

technique, since it lacks flexibility and, at low turbulence levels, the neces-

sary resolving power. However, it has been successfully used in difficult

engineering applications 9, and if sufficient signal is available from each

scatterer, so that the correlator can be operated in a burst mode, the FFT is

the obligatory method for processing each autocorrelation function.

We have also seen that the Fourier transform method can be adapted to

cover experiments on high-speed flows where the turbulence levels are fairly

low, which includes many of the types of flow of particular interest at the

Royal Aircraft Establishment. For these reasons, our efforts in the field of

* data-reduction have been concentrated mainly on the development of Fortran

programmes based on this technique. A detailed description of the structure of

such a programme, and of the hardware used for on-line applications, is given
I0

in another paper presented at this conference . We now discuss some import-

ant characteristics of the Fourier transform in laminar and low-turbulence

flows.

3.3.1 Laminar flows

The limited number of channels available in a clipping correlator signifi-

cantly restricts the number of cycles available in the record obtained from a

laminar flow. The rectangular data-window produces an effect in the transform

plane which is exactly equivalent to instrumental broadening in classical

spectroscopy. The delta-function which would ideally be present is replaced by

a function having a sin x/x behaviour, although still centred at the same

point on the ur-axis . Thus an accurate estimation of the velocity can be made

simply by finding the position of the peak of the Fourier transform. (We ignore
0

the extremely small perturbation which will arise from the associated sin x/x O

function centred at the symmetric point on the negative u-axis.) We shall now

show that the sin ,c/x structure can also be used to decide whether, within the

limits of experimental accuracy, the flow is laminar.
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We assume that, if present, the beam profile term (the exponential factor)

has been removed in the manner described in section 3.2.2(b) together with any

residual constant term. Hence we have an equation of the form

G(T) = c Pu (u) cos 2-uT du (17)
0

where c is some constant. The inverse transform is, by the Wiener-Khinchine

theorem,

Pu(u) = 2 o s 2 ruT d- (18)

0

Now for laminar flow at velocity u0

G(r) = cos --

The data record terminates at some value T , say, of T , so that the com-m

puted function will be, writing w and w0 for 2nu/s and 2nu0/s respectively.

T2 /m

Pu(u) Cos W0 T C dT (19)

0

or

_sin(,_- )r sin( +
Pu(u) = Wi i - Wo W + W0) ]0

At u = u0 ,the ratio of the first term to the second is at least 2w T

But the time per cycle is 2r/w0 , so that the number of cycles contained in the

record, say q , is w0Tm/2w and the ratio is at least 47q . A typical

experimental value for q , using a 48-channel correlator, would be about 8,

so that the first term would be more than 100 times the maximum value of the

second at resonance. Hence around u - u0  we take as a good approximation

T sin 21Tr(q

Pu(U) = 2 q_2 c -

in terms of q
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The first zeros on either side of the peak at u = u0 occur when

ie when

U = U (+2q

Suppose we regard the curve between these two points as defining a velo-

city distribution. Then the 'turbulence intensity' (the ratio of the standard

deviation to the mean) associated with such a distribution, say P, would be

given by the formula

- C+

f (u - u0 ) 
2p(u)du

I rA __ _ __ _ __ _

U0  +f u (u)du

where a+ = u0 (1 + , _ = u0 ( - )

Putting

we find

'p =sin x d (20)x

From tables,

I
4.82q

O.

Hence ' will depend purely on the number of cycles in the record. The

progrnme can easily be arranged to determine this quantity as a by-product of

other calculations, and it can be compared with the estimate of turbulence
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intensity generated by the main programme. (This searches outwards from the

peak in the Fourier transform plane and also uses as limits for the integration

the points at which the distribution first crosses the u-axis .) If the two

values agree closely, it can be concluded that the flow is essentially laminar;

any turbulence present in the flow would result in an estimate for turbulence

intensity greater than 4 .

3.3.2 Flows with low turbulence levels

At sufficiently high turbulence levels, the autocorrelation function will

have decayed away effectively to zero by the end of the record; for a 48-channel

correlator operating with typical settings on a flow having a fairly symmetric

unimodal velocity distribution, the level below which truncation effects begin

to appear is about 4 or 5%. Mean velocity estimates are very little affected

at such low levels, but the accurate determination of the turbulence intensity

begins to pose problems. If a good model of the flow is available for curve-

fitting purposes, it should be possible to obtain accurate estimates down to the

laminar condition; for example, a Gaussian model would often be acceptable.

Methods for extrapolation of the autocorrelation function, using analytic con-
.I12tinuation or maximum entropy techniques, have also been proposed. However,

they would all require a separate and distinct programme. A procedure has there-

fore been devised, based on an extension of the technique described in the last

section, which uses information already available in the Fourier transform plane.

The basic assumption is that at these low turbulence levels the distribu-

tions are effectively Gaussian. For each value of turbulence intensity nt

over the desired region (typically 0 - 5%), an autocorrelation function having a

specified length of q cycles can be computed; this represents the data that

would be obtained in an ideal experiment on such a flow. Since the autocorre-

lation data are truncated, the Fourier transform will consist of a broadened

central lobe with oscillatory wings. From this central lobe, defined by the

points at which the curve first crosses the u-axis on either side of the peak,

an apparent turbulence intensity n a can be calculated. It is found as a matter

of experiment that if, for various values of q , the quantity qna  is plotted

against qnt , the curves virtually coincide, and a single look-up table can

0 therefore be constructed to cover a range of values of the product qn
0

Estimates of q and na  are available from the main programme and the refined

estimate of turbulence intensity, nt , can be made part of the output data-set.
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3.4 The autocorrelation function for a single transit in the presence of noise

It has been remarked previously that an experimental autocorrelation func-

tion will always contain a reasonably constant additive term, usually arising

mainly from the stray radiation present in the experimental environment. If it

can be assumed that only one scatterer has contributed to the data, interesting

information about the circumstances of the experiment can be extracted in the

following way.

Equation (4) can be written, ignoring the phase constant (2w/s)y0

I(t) = c xp - 2 cos - +c 2  (21)

r 0

where c Io(I + p2 ) exp- (Y + . 2

and c2  is the intensity of the background illumination, which is assumed to be

constant. Then if the experiment lasts for a time T , long compared with the

beam transit time r0//(u
2 + v 2) , we have

T/2

G(T) - I(t)I(t + T)dt
-T/2

- c, / r0 v2 2xp Cu 2  + m cos + c c 2 27 _ 0
u2+ v2212 0 ' r

2 2
x[ + m exp- r + C2 T.

2s2(u2 + v2  2

The second exponential term will be quite negligible in any real experi-

ment and we can write

G ( r ) - c ., .
o

1 2 /u2 +v2

( +V22 + cos- +cc + c 2 T

r s +cI 2 /7rVu+ v2  2

(22)
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(Note that the units of I(t) are energy (pulses) per unit time and of G(T)

energy squared per unit time.)

Suppose the maximum and minimum channel contents near the origin (T - 0)

are Gma x  and G min - these correspond to values of the cosine term of approxi-

mately +1 and -1 respectively. Then if T is the sample time, ie the
s

width of a channel, and if m is taken to be unity,

Gmax- Gmin c2 r0
Ts - -2 /u2 + v2

from which cI can be found. Also

G - r r 2
G(0) max 2 3vT 0 + Clc V2€7 0 + C2 T

= T c 1 4  77 + v2  1 2 ulv2

giving c2

The total number of pulses received by the correlator is

T/2

t I-d- c-o + C T (23)
Nto = (t)dt c 2 /u 2 + 2

-T/2

Hence the number of signal counts is

N C r r02 u2 -+v2

and the number of background counts is

N = cT
b 2

In Ref 10 a correlation function acquired over a period of 25 ms is dis-

played. For this experiment, the relevant values are found to be, approximately,

Gmax - 22, Gmin 11 . The sample time setting T s was 0.25 us , the beam

radius about 500 microns and the velocity across the beam about 33 m s -  We

find for this case

c = 1.819 us

c 2 = 0.0283 us

N = 34
f

Nb  = 708

' . -. . , , . . . . . . . . : . . . .. . . . . . .. . . . . ., , -.. .. ,. , . . . . I ' i i l "b-
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The peak count rate would have been, putting t =0 and m =I in (21), 3.67 MHz,

while the background count rate was 28.3 kHz. It is interesting to note that a

good velocity estimate appears to be obtainable from only 34 signal pulses, in

the presence of considerable noise.

4 CONCLUDING REMARKS

It has been demonstrated that the characteristics of the measuring volume

make some degree of approximation in the interpretation of the Doppler-difference

signal or of its autocorrelation function unavoidable, and that, in the absence

* of a complete imodel for the velocity field of the fluid under study, further

simplifying assumptions have to be made. The errors which result can be made

small, however, by careful design of the experiment. Specifically, the optical

geometry should be arranged wherever possible so that the period of a Doppler-

* difference cycle is very much less than the beam radius transit time; this case

involves the smallest number of assumpti.-ns about the nature of the flow. In

addition, it has been shown that the data-reduction procedure is then of the

simplest kind.
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